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ABSTRACT 

Despite significant progress in the commercialization of extreme ultraviolet (EUV) lithography, many important 
challenges remain, including in the area of masks. The issue of EUV phase roughness that can arise from either 
multilayer or capping layer roughness has recently garnered increasing concern. The problem with mask phase 
roughness is that it couples line-edge roughness (LER) through the formation of image plane speckle. The coupling from 
phase roughness to LER depends on many factors including roughness magnitude, roughness correlation length, 
illumination partial coherence, aberrations, defocus, and numerical aperture. Analysis shows that only on the order of 50 
pm multilayer roughness may be tolerable at the 22-nm half-pitch node. Results also show that Atomic Force 
Microscopy (AFM) may not be a suitable method for measuring mask phase roughness due to its sensitivity to the 
surface only. Capping layer roughness is another significant concern especially given that it has been shown to increase 
with cleaning cycles. In this case, however, AFM does provide a reasonable metric.   
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1. INTRODUCTION 

Despite significant progress in the commercialization of extreme ultraviolet (EUV) lithography [1], many challenges 
remain including important challenges in the area of masks. Of these mask challenges, certainly defectivity is the most 
pressing and well known [2]. Significant progress has been made in this area, but another two orders of magnitude defect 
reduction is still required to meet current pilot lines goals [2]. Another significant concern for EUV masks is critical 
dimension uniformity (CDU) and in particular effective CDU at the wafer. The non-telecentric nature of EUV masks due 
to the requisite off-axis illumination, raises a variety of EUV specific problems. A thorough survey of the various 
sources of mask-induced CDU has been presented by Gallagher et al. [3]. 

A third area of significant concern for EUV masks is mask-induced line-edge roughness (LER). Here we summarize 
mask contributors to LER including mask multilayer roughness, mask capping layer roughness, and mask LER. We also 
discuss implications on mask requirements, metrology methods, and mask cleaning processes. 

2. MASK MULTILAYER ROUGHNESS 

Roughness that is reproduced throughout a significant portion of the multilayer stack is referred to as replicated surface 
roughness (RSR). This roughness directly maps to phase roughness in the reflected field which in turn maps to image 
plane speckle and LER [4-7]. The concern over, this problem has recently increased since its experimental demonstration 
in printed wafers at EUV [8] in both an microfield exposure tool [9] and a full field EUV alpha tool [3]. The coupling 
from roughness to LER depends on many factors including roughness magnitude, roughness correlation length, 
illumination partial coherence, aberrations, defocus, and numerical aperture (NA) [10]. To study this effect, scalar two-
dimensional aerial image modeling can be used [6, 11]. In this model, the multilayer roughness is represented as in-plane 
phase variations at the mask. Accounting for reflection from the Bragg structure and assuming the roughness to be 
replicated throughout at least the top 10 bilayers of the multilayer, the phase variations are set to two times the multilayer 
height variations to be modeled. A detailed description of this modeling technique can be found in Ref. [6]. 
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As stipulated above, mask phase roughness couples to LER through the generation of image-plane speckle, or 
random intensity variations. The reason that a pure phase distribution translates to intensity variations at the wafer is that 
the imaging system itself is band-limited meaning that even an aberration-free system cannot faithfully reproduce the 
exact electric field and failure to do so causes the magnitude squared of the electric field to no longer be perfectly 
uniform. The problem becomes even more severe as we deviate from an ideal system by, for example, moving out of 
focus. Moving out of focus is identical to observing the electric field after propagation a certain distance away from the 
mask. This process causes points with random phase to mix and interfere causing speckle [12]. Another way to view this 
process is through a concept known as transport of intensity [13-15] where random wavefront curvatures in one plane 
causes ray bundle concentration (intensity) variations in another plane. 

Figure 1 shows the modeled image plane speckle arising from a mask with 230 pm RSR when imaged using an 
optical system with a NA of 0.25. What is being modeled is a clear area on the mask and in the ideal case we would see 
perfectly uniform intensity at the wafer. Figure 1(a) shows the image intensity at best focus and with a partial coherence 
of 0.5 yielding an RMS contrast of 0.9%. Figure 1(b) is with 50 nm defocus and again with a partial coherence of 0.5 
yielding an RMS contrast of 6%. Finally, Fig 1(c) is with 50 nm defocus and again with a partial coherence of 0.3 
yielding an RMS contrast of 9%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The effect of roughness and its dependence on focus can be directly visualized using an EUV mask imaging 
microscope. Figure 2 shows images from the SEMATECH Berkeley Actinic Inspection Tool (AIT) [16] imaging a 
typical EUV mask using an equivalent NA of 0.25 and an effective partial coherence of approximately 0.15. The image 
labels represent the defocus in nm. As the defocus is increased, so is the speckle magnitude. Additionally it is evident 
that the line contrast decreases at the same time causing the impact on LER to be even greater. The impact of the mask 
roughness on the wafer plane LER has also been directly experimentally verified using the SEMATECH Berkeley MET. 
To accentuate the effect, a small partial coherence (0.05) and large defocus (100 nm) was used [8]. Figure 3 shows 
printed line edge data for a single line edge exposed three separate times. The total analyzed line length is approximately 
1 μm. The correlation of the line edge data from exposure to exposure is a measure of the mask contributions since any 
resist contributions would certainly be expected to be uncorrelated from exposure to exposure. These effects have further 
been verified in a full field Alpha Demo Tool using a conventional discharge source and a partial coherence of 0.5 [3].  

The experimental results on the effect of mask roughness obtained on the SEMATECH Berkeley MET have been 
used to verify a model we have developed to predict this effect [8]. This model has subsequently been used to predict 
sensitivity of the mask roughness effect to a variety of mask and optical system parameters and to estimate future mask 
requirements [10]. The most obvious mask parameter to consider is roughness. Figure 4 shows the computed image 
plane line-width roughness (LWR) as a function of RSR for various amounts of defocus. Also assumed is a NA of 0.32, 
22-nm half pitch line/space features, a partial coherence of 0.5, flare of 5%, a roughness correlation length of 100 nm, 
and a roughness exponent of 1. The results show that even with an RSR as small as 50 pm, we have 1-nm of LWR at 75-
nm defocus. 

b) c) a) 

Fig. 1.  Modeled image plane speckle arising from a mask with 230 pm RSR when imaged using an optical system 
with a numerical aperture of 0.25. (a) is at best focus with a partial coherence of 0.5 yielding an RMS contrast of 
0.9%. (b) is with 50 nm defocus with a partial coherence of 0.5 yielding an RMS contrast of 6%. (c) is with 50 nm 
defocus with a partial coherence of 0.3 yielding an RMS contrast of 9%. 
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Fig. 2.  Demonstration of mask induced speckle using an EUV aerial imaging microscope. The image labels represent the 
defocus in nm. The predicted speckle contrast increase with defocus is observed. 
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Fig. 3.  Printed line edge data for a single line edge exposed three separate times. The total analyzed line length 
is approximately 1 μm. 

Fig. 4.  Computed image plane line-width 
roughness (LWR) as a function of RSR for various 
amounts of defocus. Also assumed is a numerical 
aperture of 0.32, 22-nm half pitch line/space 
features, a partial coherence of 0.5, flare of 5%, a 
roughness correlation length of 100 nm, and a 
roughness exponent of 1. 
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Certainly the increase in LWR as a function of RSR should be expected. Less obvious, however, is the dependence 
of the LWR on the correlation length of the RSR. In general one would expect the correlation length to be determined by 
the coating properties and for magnetron coating the correlation length is typically on the order of 100 nm. Figure 5 
shows the effect of the correlation length. Again we assume a NA of 0.32, a feature size of 22 nm, a partial coherence of 
0.5, flare of 5%, and a roughness exponent of 1. We also assume an RSR of 100 pm. In this case we see peaked behavior 
where the peak position is determined by the NA of the optic. Unfortunately, the peak occurs very close to the 
correlation length typically observed in EUV masks. 

 

 

 
 

Another important question is roughness requirements into the future. Figure 6 shows a plot of the computed LWR 
for future nodes (increasing NA and decreasing feature size at a fixed k1 factor). We assume a partial coherence of 0.5, 
flare of 5%, a roughness exponent of 1, and an RSR of 100 pm. The defocus values are scaled as 1/NA2. We come to the 
surprising conclusion that the roughness problem becomes less severe into the future [10]. This is a result of having 
made the assumption that the RSR correlation length remains fixed into the future as the NA is increased causing us to 
moving further away from the peak seen in Fig. 5. 
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Fig. 5.  Effect of RSR correlation length on 
computed image plane LWR. The LWR behavior is 
peaked with the peak position being determined by 
the numerical aperture of the optic. Again we 
assume a numerical aperture of 0.32, a feature size 
of 22 nm, a partial coherence of 0.5, flare of 5%, 
and a roughness exponent of 1. We also assume an 
RSR of 100 pm. 
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3. RSR METROLOGY 
Clearly RSR is an issue of concern which begs the question of how it can be measured. Currently, mask roughness is 

measured using atomic force microscopy (AFM), however, it is evident that AFM can only measure the top surface and 
not the true RSR. The true RSR, however, can be estimated by way of EUV scattering measurements [17]. Direct 
comparison of top surface AFM measurements to EUV scattering measurements (XRS) are shown in Fig. 7. The EUV 
scattering measurements were performed at the Center for X-ray Optics EUV Calibrations and Standards beamline at the 
Advanced Light Source [18]. In this case a variety of samples with increasing roughness were compared. At large 
roughness values, we find the AFM and XRS to match well, but as the roughness drops below approximately 0.4 nm, the 
two methods start to differ significantly. Noting that all EUV masks of commercial relevance currently have roughness 
values of smaller than approximately 150 pm, we see that AFM roughness cannot be assumed to be an accurate metric. 

 

 
 

4. CAPPING LAYER ROUGHNESS 
The analysis above implicitly assumed the phase roughness to be a result of RSR. Although RSR is the physical 
roughness source which mostly strongly couples to phase roughness, other sources of roughness can also be important, 
for example multilayer capping layer roughness. Unlike RSR, capping layer roughness couples to phase roughness 
through refraction and additionally causes reflected amplitude roughness, thus the optical properties of the capping layer 
must be taken into account. The most common capping layer for EUV mask multilayer stacks is ruthenium which 
provides a double-pass phase shift of 6° per nm of thickness [19]. Additionally, 1 nm of ruthenium attenuates the light by 
3% in double pass. By contrast, silicon would provide only 0.0036° phase shift per nm of material double pass and 0.3% 
attenuation [19]. From this perspective, ruthenium does not appear to be an optimal choice for capping layer. 
Nevertheless, as-deposited ruthenium capping layers are more than adequately smooth for this not to be an issue. 

The concern with the ruthenium capping layer arises when the mask is cleaned and the capping layer is potentially 
roughened. Figure 8 shows measured ruthenium capping layer roughness as a function of cleaning cycles using a 
conventional wet cleaning process [20]. Also shown is a linear fit to the data, extrapolating the damage out to 30 
cleaning cycles. This roughness data can then be used to predict the resulting LWR, but as discussed above we must also 
account for the roughness correlation length and roughness exponent. For the cleaning process considered here, these 
values have been found to be 15 nm and 0.65, respectively [10]. From these values, the resulting LWR can be computed 
(Fig.9), yielding near 1 nm LWR at the edge of focus after 30 cleaning cycles. The asymmetric through focus behavior is 
a result of combined phase and amplitude roughness in the reflected field owing to the absorptive properties of the 
ruthenium. 
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Fig. 7.  Direct comparison of top surface 
AFM measurements to EUV scattering 
measurements (XRS). A variety of samples 
with increasing roughness are compared. At 
large roughness values, the AFM and XRS 
measurement match well, but as the roughness 
drops below approximately 0.4 nm, the two 
methods start to differ significantly. 
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5.  SUMMARY 
Mask RSR is a potentially significant source of image plane LWR in EUV lithography. The sensitivity of the 

induced LWR to roughness depends on many factors including illumination partial coherence, defocus, roughness 
correlation length, roughness exponent, and NA. The strong dependence of LWR on the roughness correlation length is 
of particular interest and demonstrates the importance of specifying the higher order statistics of the mask roughness. 
Metrology of the mask roughness is also an issue of concern. Results show top surface AFM to not be a reliable metric, 
suggesting that actinic metrology is required to measure the RSR. Capping layer roughness has also been shown to be an 
issue of potential concern in light of cleaning induced damage of the ruthenium. 
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Fig. 8.  Measured ruthenium capping layer 
roughness as a function of cleaning cycles 
using a conventional wet cleaning process 
[19]. Also shown is a linear fit to the data, 
extrapolating the damage out to 30 cleaning 
cycles. 

Fig. 9.  Computing LWR resulted from 
cleaning-induced capping layer roughness. 
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